6 research outputs found

    Exploiting One-Dimensional Convolutional Neural Networks for Joint Channel Estimation and Signal Detection in Non-Orthogonal Multiple Access Systems

    Get PDF
    الوصول المتعدد غير المتعامد (NOMA) هو تقنية واعدة للجيل الخامس و الاجيال المستقبلية من شبكات الاتصالات اللاسلكية ، مما يزيد من كفاءة الطيف ويقلل من زمن الوصول. ومع ذلك، يمكن أن يتأثر أداء NOMA بإلغاء التداخل المتتالي غير المثالي (SIC). تم اقتراح تقنيات الذكاء الاصطناعي للمساعدة في الكشف عن الإشارات وتقدير القنوات في أنظمة NOMA. في هذه الدراسة ، نقترح نهجًا جديدًا باستخدام الشبكات العصبية التلافيفية أحادية البعد (1D CNN) لمعالجة قيود المحددة لأنظمة الذكاء الاصطناعي الحالية. على عكس طرق الذكاء الاصطناعي الأخرى التي تعتمد على تبعيات الوقت لتصنيف البيانات ، تستخدم 1D CNN طبقة التفاف أحادية البعد لاستخراج الميزات، مما يؤدي إلى موثوقية عالية. تظهر نتائج المحاكاة أن طريقتنا المقترحة تتفوق على تقنيات التعلم العميق الحالية من حيث معدل الخطأ في العينة (SER). علاوة على ذلك ، يؤدي تقليل معلمة البادئة الدورية (CP) إلى زيادة التداخل بين العينات (ISI) ، ولكن طريقتنا لا تزال تحقق تحسينًا بمقدار 6 ديسيبل على النهوج في (11،13) وتقنيات تقدير القنوات التقليدية مثل الاحتمال الأقصى (ML) عند إشارة منخفضة إلى- نسب الضوضاء (SNR).Non-Orthogonal Multiple Access (NOMA) is a promising technology for the fifth and future generations of wireless communication networks, which increases spectral efficiency and reduces latency. However, NOMA performance can be affected by imperfect successive interference cancellation (SIC). Deep learning techniques have been proposed to aid in signal detection and channel estimation in NOMA systems. In this study, we propose a new approach using one-dimensional convolutional neural networks (1D CNN) to address the limitations of current deep learning methods. Unlike other deep learning methods that rely on time dependencies for data classification, 1D CNN uses a 1-dimensional convolution layer for feature extraction, resulting in high reliability. Simulation results demonstrate that our proposed method outperforms existing deep learning techniques in terms of sample error rate (SER) by 7dB. Moreover, reducing the cyclic prefix (CP) parameter increases inter-sample interference (ISI), but our method still achieves a 6 dB improvement over approaches in [11,13] and traditional channel estimation techniques like maximum likelihood (ML) at low signal-to-noise ratios (SNR)

    Detection of electrocardiogram QRS complex based on modified adaptive threshold

    Get PDF
    It is essential for medical diagnoses to analyze Electrocardiogram (ECG signal). The core of this analysis is to detect the QRS complex. A modified approach is suggested in this work for QRS detection of ECG signals using existing database of arrhythmias. The proposed approach starts with   the same steps of previous approaches by filtering the ECG. The filtered signal is then fed to a differentiator to enhance the signal. The modified adaptive threshold method which is suggested in this work, is used to detect QRS complex. This method uses a new approach for adapting threshold level, which is based on statistical analysis of the signal. Forty-eight records from an existing arrhythmia database have been tested using the modified method. The result of the proposed method shows the high performance metrics with sensitivity of 99.62% and a positive predictivity of 99.88% for QRS complex detection

    Fatigue Detection Method Based on Smartphone Text Entry Performance Metrics

    Get PDF

    Fog computing framework for internet of things applications

    Get PDF
    Within the Internet of Things (IoT) era, a big volume of data is generated/gathered every second from billions of connected devices. The current network paradigm, which relies on centralised data centres (a.k.a. Cloud computing), becomes impractical solution for IoT data storing and processing due to the long distance between the data source (e.g., sensors) and designated data centres. In other words, by the time the data reaches a far data centre, the importance of the data would be vanished. Therefore, the network topologies have been evolved to permit data processing and storage at the edge of the network, introducing what so-called "Fog computing". The later will obviously lead to improvements in quality of service (QoS) via processing and responding quickly and efficiently to varieties of data processing requests. Therefore, understanding Fog computing architecture and its role in improving QoS is a paramount research topic. In this research, we are proposing a Fog computing architecture and framework to improve QoS for IoT applications. Proposed system supports cooperation among Fog nodes in a given location, in order to permit data processing in a shared mode, hence satisfies QoS and serves largest number of service requests. The proposed framework could have the potential in achieving sustainable network paradigm and highlights significant benefits of Fog computing into the computing ecosystem
    corecore